Management Support Systems and Business Intelligence
This chapter covers Management Support Systems (MSS) and Business Intelligence, which are designed to support company executives and experts. After providing an overview of management support systems, a brief introduction to their different types, such as MSS, DSS, EIS, and ESS is given. Then the topics of data analysis and data mining, as well as business intelligence and business analytics are presented, before finally machine learning and artificial intelligence are outlined.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 42.79 Price includes VAT (France)
Softcover Book EUR 52.74 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
- Bishop, Christopher M.; Pattern Recognition and Machine Learning, Berlin, Springer, 2008. MATHGoogle Scholar
- Borgelt, Christian; Apriori: Find Frequent Item Sets and Association Rules with the Apriori Algorithm, 2017, http://www.borgelt.net/doc/apriori/apriori.html. Last retrieved: 07/02/2018.
- Brause, Rüdiger; Neuronale Netze, Stuttgart, Teubner, 1992. Google Scholar
- Buxmann, Peter; Scheidt, Holger (Eds.); Künstliche Intelligenz, Berlin, Springer Gabler, 2019. Google Scholar
- Chamoni, Peter; Datenanalyse, in: Enzyklopädie der Wirtschaftsinformatik, Online-Lexikon, 11. edition., Berlin, GITO, 2018. Google Scholar
- Chamoni, Peter; Data Mining, in: Enzyklopädie der Wirtschaftsinformatik, Online-Lexikon, 11. edition., Berlin, GITO, 2018. Google Scholar
- Decker, Karsten; Focardi, Sergio; Technology overview: a report on data mining, Swiss Federal Institute of Technology (ETH Zurich), Technical Report CSCS TR-95-02, Zurich, 1995. Google Scholar
- Dittmar, Carsten; Knowledge Warehouse: ein integrativer Ansatz des Organisationsgedächnisses und die computergestützte Umsetzung auf Basis des Data Warehouse-Konzeptes, Wiesbaden, Deutscher Universitats-Verlag/GWV Fachverlage GmbH, 2004. Google Scholar
- Ester, Martin; Sander, Jörg; Knowledge Discovery in Databases, Techniken und Anwendungen, Berlin, Springer, 2000. Google Scholar
- Fasel, Daniel; Big Data – Eine Einführung, in: HMD Praxis der Wirtschaftsinformatik, 51(4), 2014, pp. 386–400. https://doi.org/10.1365/s40702-014-0054-8
- Fayyard, Usama; Piatetsky-Shapiro, Gregory; Smyth, Padhraic; From data mining to knowledge discovery, an overview, in: Fayyard et al. (Eds.); Advances in knowledge discovery and data mining, Menlo-Park et al., AAAI Press, 1996, pp. 1-34. Google Scholar
- Gabriel, Roland; Wissensbasierte Systeme in der betrieblichen Praxis, London, McGraw-Hill, 1992. Google Scholar
- Gluchowski, Peter; Gabriel, Roland; Dittmar, Carsten; Management Support Systeme und Business Intelligence – Computergestützte Informationssysteme für Fach- und Führungskräfte, 2. edition, Berlin / Heidelberg, Springer-Verlag, 2008. Google Scholar
- Gabriel, Roland; Gluchowski, Peter; Pastwa, Alexander; Data Warehouse & Data Mining, Witten, W3L, 2009. Google Scholar
- Gluchowski, Peter; Business Analytics – Grundlagen, Methoden und Einsatzpotenziale, in: HMD Praxis der Wirtschaftsinformatik, 53(3), 2016, pp. 273–286. https://doi.org/10.1365/s40702-015-0206-5.
- Hansen, Hans Robert; Mendling, Jan; Neumann, Gustaf; Wirtschaftsinformatik, 12. edition, Berlin / Boston, De Gruyter Oldenbourg, 2019. Google Scholar
- Mitchell, Tom M.; Machine Learning, London, McGraw-Hill, 1997. Google Scholar
- Norvig, Peter; Russell, Stuart; Künstliche Intelligenz, 3. edition, London, Pearson, 2012. Google Scholar
- Rey, Günter Daniel; Wender, Karl F.; Neuronale Netze, Eine Einführung in die Grundlagen, Anwendungen und Datenauswertung, Bern, Hofgrefe, 2018. Google Scholar
- Süße, Herbert; Rodner, Eerik; Bildverarbeitung und Objekterkennung, Wiesbaden, Spinger Vieweg, 2014. BookGoogle Scholar
- Vajna, Sándor; Weber, Christian; Zeman, Klaus; Hehenberger, Peter; Gerhard, Detlef; Wartzack, Sandro; Wissensverarbeitung, in: Vajna, Sándor; Weber, Christian; Zeman, Klaus; Hehenberger, Peter; Gerhard, Detlef; Wartzack, Sandro; CAx für Ingenieure, Berlin / Heidelberg, Springer Vieweg, 2018. ChapterGoogle Scholar
- Wikimedia Commons contributors; File:CRISP-DM Process Diagram.png, 2020, in: Wikimedia Commons, the free media repository, CC BY-SA 3.0, modified, https://commons.wikimedia.org/w/index.php?title=File:CRISP-DM_Process_Diagram.png&oldid=506972775. Last retrieved: 06/02/2021.
- Weber, Wolfgang; Industrieroboter, Leipzig, Fachbuchverlag, 2012. Google Scholar
- Whitehorn, Mark; The parable of the beer and diapers, 2006, https://www.theregister.co.uk/2006/08/15/beer_diapers/. Last retrieved: 07/02/2018.
Author information
Authors and Affiliations
- Competence Center E-Commerce (CCEC), South Westphalia University of Applied Sciences, Soest, Germany Peter Weber & Katharina Menke
- Wirtschaftsinformatik, Ruhr-Universität Bochum, Bochum, Germany Roland Gabriel
- Prozessmanagement im Gesundheitswesen, Hochschule Niederrhein, Krefeld, Germany Thomas Lux
- Peter Weber