Management Support Systems and Business Intelligence

This chapter covers Management Support Systems (MSS) and Business Intelligence, which are designed to support company executives and experts. After providing an overview of management support systems, a brief introduction to their different types, such as MSS, DSS, EIS, and ESS is given. Then the topics of data analysis and data mining, as well as business intelligence and business analytics are presented, before finally machine learning and artificial intelligence are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 42.79 Price includes VAT (France)

Softcover Book EUR 52.74 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

References

  1. Bishop, Christopher M.; Pattern Recognition and Machine Learning, Berlin, Springer, 2008. MATHGoogle Scholar
  2. Borgelt, Christian; Apriori: Find Frequent Item Sets and Association Rules with the Apriori Algorithm, 2017, http://www.borgelt.net/doc/apriori/apriori.html. Last retrieved: 07/02/2018.
  3. Brause, Rüdiger; Neuronale Netze, Stuttgart, Teubner, 1992. Google Scholar
  4. Buxmann, Peter; Scheidt, Holger (Eds.); Künstliche Intelligenz, Berlin, Springer Gabler, 2019. Google Scholar
  5. Chamoni, Peter; Datenanalyse, in: Enzyklopädie der Wirtschaftsinformatik, Online-Lexikon, 11. edition., Berlin, GITO, 2018. Google Scholar
  6. Chamoni, Peter; Data Mining, in: Enzyklopädie der Wirtschaftsinformatik, Online-Lexikon, 11. edition., Berlin, GITO, 2018. Google Scholar
  7. Decker, Karsten; Focardi, Sergio; Technology overview: a report on data mining, Swiss Federal Institute of Technology (ETH Zurich), Technical Report CSCS TR-95-02, Zurich, 1995. Google Scholar
  8. Dittmar, Carsten; Knowledge Warehouse: ein integrativer Ansatz des Organisationsgedächnisses und die computergestützte Umsetzung auf Basis des Data Warehouse-Konzeptes, Wiesbaden, Deutscher Universitats-Verlag/GWV Fachverlage GmbH, 2004. Google Scholar
  9. Ester, Martin; Sander, Jörg; Knowledge Discovery in Databases, Techniken und Anwendungen, Berlin, Springer, 2000. Google Scholar
  10. Fasel, Daniel; Big Data – Eine Einführung, in: HMD Praxis der Wirtschaftsinformatik, 51(4), 2014, pp. 386–400. https://doi.org/10.1365/s40702-014-0054-8
  11. Fayyard, Usama; Piatetsky-Shapiro, Gregory; Smyth, Padhraic; From data mining to knowledge discovery, an overview, in: Fayyard et al. (Eds.); Advances in knowledge discovery and data mining, Menlo-Park et al., AAAI Press, 1996, pp. 1-34. Google Scholar
  12. Gabriel, Roland; Wissensbasierte Systeme in der betrieblichen Praxis, London, McGraw-Hill, 1992. Google Scholar
  13. Gluchowski, Peter; Gabriel, Roland; Dittmar, Carsten; Management Support Systeme und Business Intelligence – Computergestützte Informationssysteme für Fach- und Führungskräfte, 2. edition, Berlin / Heidelberg, Springer-Verlag, 2008. Google Scholar
  14. Gabriel, Roland; Gluchowski, Peter; Pastwa, Alexander; Data Warehouse & Data Mining, Witten, W3L, 2009. Google Scholar
  15. Gluchowski, Peter; Business Analytics – Grundlagen, Methoden und Einsatzpotenziale, in: HMD Praxis der Wirtschaftsinformatik, 53(3), 2016, pp. 273–286. https://doi.org/10.1365/s40702-015-0206-5.
  16. Hansen, Hans Robert; Mendling, Jan; Neumann, Gustaf; Wirtschaftsinformatik, 12. edition, Berlin / Boston, De Gruyter Oldenbourg, 2019. Google Scholar
  17. Mitchell, Tom M.; Machine Learning, London, McGraw-Hill, 1997. Google Scholar
  18. Norvig, Peter; Russell, Stuart; Künstliche Intelligenz, 3. edition, London, Pearson, 2012. Google Scholar
  19. Rey, Günter Daniel; Wender, Karl F.; Neuronale Netze, Eine Einführung in die Grundlagen, Anwendungen und Datenauswertung, Bern, Hofgrefe, 2018. Google Scholar
  20. Süße, Herbert; Rodner, Eerik; Bildverarbeitung und Objekterkennung, Wiesbaden, Spinger Vieweg, 2014. BookGoogle Scholar
  21. Vajna, Sándor; Weber, Christian; Zeman, Klaus; Hehenberger, Peter; Gerhard, Detlef; Wartzack, Sandro; Wissensverarbeitung, in: Vajna, Sándor; Weber, Christian; Zeman, Klaus; Hehenberger, Peter; Gerhard, Detlef; Wartzack, Sandro; CAx für Ingenieure, Berlin / Heidelberg, Springer Vieweg, 2018. ChapterGoogle Scholar
  22. Wikimedia Commons contributors; File:CRISP-DM Process Diagram.png, 2020, in: Wikimedia Commons, the free media repository, CC BY-SA 3.0, modified, https://commons.wikimedia.org/w/index.php?title=File:CRISP-DM_Process_Diagram.png&oldid=506972775. Last retrieved: 06/02/2021.
  23. Weber, Wolfgang; Industrieroboter, Leipzig, Fachbuchverlag, 2012. Google Scholar
  24. Whitehorn, Mark; The parable of the beer and diapers, 2006, https://www.theregister.co.uk/2006/08/15/beer_diapers/. Last retrieved: 07/02/2018.

Author information

Authors and Affiliations

  1. Competence Center E-Commerce (CCEC), South Westphalia University of Applied Sciences, Soest, Germany Peter Weber & Katharina Menke
  2. Wirtschaftsinformatik, Ruhr-Universität Bochum, Bochum, Germany Roland Gabriel
  3. Prozessmanagement im Gesundheitswesen, Hochschule Niederrhein, Krefeld, Germany Thomas Lux
  1. Peter Weber